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Abstract: We provide a novel approach to solving the contextual stochastic optimization problem with the decision-

dependent effect. Our algorithm overcomes the model dependency of the parameters on the decision variables, whereas

traditional contextual optimization algorithms generally fail to tackle this decision dependency embedded in the model.

To solve this problem, we introduce the contextual gradient concept that prescribes the true objective’s first-order deriva-

tive and develop the contextual gradient descent (CGD) algorithm. We prove that the proposed CGD method achieves

a bounded error to the global optimality under the convexity condition, and converges to a stationary point of expected

gradient otherwise. Using real-world datasets, extensive numerical experiments demonstrate the superior numerical per-

formance of our proposed CGD algorithm compared to existing methods that can be applied to contextual optimization

problems with the decision-dependency effect.
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1 Introduction

In many real-world management processes, decision makers (DM) regularly confront the following stochas-

tic optimization model,

min
x∈X

g(x) =Ey∼ f (y)[l(x, y)], (1)

where l(x, y) is the objective function to be minimized, and x is the decision variable in a feasible region

X ∈Rd; y is some stochastic model parameters, whose distribution density function is f (y). Note that f (y)

is unknown to the DM. There are two complex tasks in this stochastic optimization problem: prediction and

optimization. The prediction task requires DM to predict stochastic parameters in models, such as demand

and lead time. The optimization task usually involves optimizing decisions with the aim of maximizing

profits or minimizing costs based on the prediction result. When some side information z is provided to

estimate y, i.e., f (y; z) is dependent on z, the problem is also called Contextual Stochastic Programming

(CSO). We refer to Sadana et al. (2023) for a comprehensive review of recent contextual optimization works.

The CSO problem is widely applied in practice. A notable example is the contextual newsvendor problem.

In this problem, the DM should optimize the order quantity x with unknown demand y. Some features z are

provided for the DM to estimate the distribution of the demand. The DM also has historical demand data

{z(i),D(i)}N
i=1. And the objective is to minimize the minus revenue f (x, y) =−p(y∧x)+cx−s(x−y)+, where

p, c, s are the per-unit price, inventory cost and salvage value respectively. And ∧ denotes component-wise
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minimum, (·)+ = max{·,0}. The contextual newsvendor problem has been widely studied, and methods like

sample average approximation (SAA), empirical risk minimization (ERM), and deep learning are applied

to solve such problem (see, e.g., Ban and Rudin (2018), Lin et al. (2022), Levi et al. (2015), Godfrey and

Powell (2001)).

For these applications, an intrinsic challenge is that the stochastic parameter depends on decision vari-

ables. In other words, we need to know x to estimate the distribution f (y; z, x) in (1). For instance, customer

demand is usually affected by the pricing decision made in a revenue management context. However, except

for a few options (Bertsimas and Kallus 2019, Bertsimas and Koduri 2022), the contextual optimization

model with endogenous uncertainty is rarely studied. Although Bertsimas and Kallus (2019) provided a

weighted SAA approach and built an approximated model to estimate the expectation of objective function

conditioned on x and z in (1), they just proved the tractability when using discretization, and a special solu-

tion approach applicable for the tree-weight case. Therefore, how to efficiently solve the general contextual

optimization problem (1) under the decision-dependent effect still remains unclear. The aim of this research

is to provide a general approach to solve the decision-dependent contextual optimization models.

Note that most of the existing solution approaches for CSO are not directly applicable to CSO with

decision-dependent uncertainty. Most traditional approaches (e.g., SAA and ERM) estimate the distribution

of stochastic parameters conditioned on contextual information y|z, and the estimated conditional distri-

bution is fixed in the downstream optimization step since the contextual information z does not change.

However, the conditional distribution y|z, x changes continuously during the optimization step because of

the iteration of x. Hence, it is hard to perform optimization unless we have the estimation of y conditioned

on every possible combination of z and x.

To address these issues, a natural idea is to incorporate the decision variable x into the estimation of

the stochastic parameter (Bertsimas and Kallus 2019). That is, to add decision variables as an input of the

estimation model to estimate the conditional distribution. Although this estimation approach also achieves

asymptotic optimality (see Theorem 10 in Bertsimas and Kallus (2019)), its downstream optimization task is

difficult to perform. This is because the decision variables appear in both the estimation model and objective

function, causing the non-convexity of the optimization model. Furthermore, for some discrete estimation

models (e.g., kNN, tree models, and random forest), the approximate objective function is discontinuous to

the decision variables even though l(x, y) is continuous.

Another idea to handle the decision-dependency is to use the local linear method to estimate the distribu-

tion within a neighborhood of the current decision (see, e.g., Liu et al. (2021)). However, the convergence

of the local linear regression approach requires that the stochastic parameter follows a regression model

of the decision variable, while this assumption may not hold in practice since the variance of the stochas-

tic parameter can also change with the decision. Moreover, they did not consider the impact of contextual

information. Therefore, to the best of our knowledge, no algorithm has been developed to directly solve a



Article submitted to: Production and Operations Management
Article Short Title 3

contextual stochastic optimization problem under the decision-dependent effect, which we address in this

paper.

Instead, we consider algorithms that directly approximate the derivative of the true objective, i.e., the

true expectation of the stochastic objective function. Specifically, we propose the Contextual Gradient in

(7). Note that the concept of contextual gradient also appears in Lee et al. (2022). But in that work it

denotes a scaled gradient to suit meta-learning task, while in our work it is an approximation to the unknown

stochastic gradient. Under mild conditions, we show that the contextual gradient is an unbiased estimation

of the expected derivative of the objective function (Proposition 1). Thus the contextual gradient can be a

proxy for the gradient and can be embedded into some gradient-based algorithms, for instance, gradient

descent (GD) and stochastic gradient descent (SGD).

We establish a global convergence guarantee of the contextual gradient descent (CGD) algorithm when

the objective function is convex. We prove the error upper bounds of CGD under convex and strong convex

conditions. Specifically, we show that the error of CGD can be separated into two parts: decision-dependent

error and initial value error. Furthermore, under the strongly-convex condition, the CGD algorithm achieves

a converging upper bound of the distance between the iterative solutions and the global optimal solution.

We also extend the convergence results to the general non-convex case. Under the non-convex condition,

although we cannot completely characterize global optimality guarantees, we find that the algorithm can

converge to the stationary point of the original prescriptive optimization problem, in which the true expected

gradient is zero. We further show that this condition is necessary for global optimality. Our convergence

results in both convex and non-convex conditions are similar to those of gradient descent (see, e.g., Bert-

sekas (1999)), which indicates that the contextual gradient is a reasonable estimation of the true gradient

and can suitably be a proxy for the gradient in CSO problems.

We further conduct extensive numerical experiments to demonstrate the effectiveness of the proposed

CGD algorithm compared to several different policies, including the discretization method and the estimate-

then-optimize framework based on linear decision rule assumption. Our numerical experiments are con-

ducted on both a simulated newsvendor pricing problem and a real-world electricity pricing problem.

1.1 Contributions

Our contributions are mainly three-fold:

Concept of contextual gradient. We propose the concept of contextual gradient, which is a direct esti-

mation of the gradient of the true objective expectation. The contextual gradient is derived by applying a

weighted-SAA approach to the true expected gradient. We prove that the contextual gradient is an unbiased

estimation of the expected gradient of the objective function l(x, y) (Proposition 1). The contextual gradi-

ent thereby enables the design of gradient-based algorithms and thus solves the challenge arising from the

inaccessibility of gradient information for contextual optimization models with endogenous uncertainty.
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Algorithm design and convergence guarantee. We develop the Contextual Gradient Descent (CGD) algo-

rithm by embedding the contextual gradient into the gradient descent algorithm. As far as we know, this is

the first formal approach to solve the contextual stochastic optimization model under decision dependency.

Our algorithm enjoys convergence guarantees under both convex and non-convex cases. Technically, we

extend the performative prediction analysis in Mendler-Dünner et al. (2020a) to a contextual and prescrip-

tive case, where the dependency on contextual information is involved and the expected gradient can only

be estimated by historical data but not sampling.

Numerical results. Our numerical results show the superior performance of the proposed CGD algorithm.

We conduct numerical experiments based on data that comes from both the simulation and practice. Com-

pared to the discretization approach, our algorithm obtains a smaller gap in a significantly shorter time.

Moreover, compared to the parametric estimate-then-optimize (ETO) solution approach that takes linear

decision assumption to the stochastic parameter, our algorithm is more generalizable by its distribution-free

and nonparametric setting, while the parametric ETO method need distributional assumptions on the deci-

sion dependency. Our algorithm outperforms by 33% under complex demand distribution. Even when the

true demand is exactly a linear regression model, our algorithm shows < 5% gap to the parametric PTO

approach that owns a correct prior knowledge to the problem.

1.2 Applications

Price-setting newsvendor. Although the application of end-to-end model to newsvendor problems is

widely studied (Ban and Rudin 2018, Lin et al. 2022), the end-to-end price-setting newsvendor problem

is seldom studied except for some options like quantile regression (Harsha et al. 2021). In the newsvendor

pricing problem, the DM should also make decision on pricing, while the stochastic demand is dependent

on the pricing decision, hence shows the decision-dependent property. In this case, the PTO framework does

not work since we cannot optimize the pricing decision with fixed demand. Our framework can directly

optimize the pricing decision based on the historical pricing and demand data.

Assortment problem. In assortment problems, the customer demands need to be somehow estimated from

data can depend on many contextual features, especially the customer type. Furthermore, they also depend

on the assortment decision made by the DM. Specifically, the assortment decision affects the probability

that an arriving customer chooses the product. Many existing work adopts an online learning framework

that gradually learns the demand conditioned on the assortment decision (Li et al. 2022, Jasin et al. 2024,

Kallus and Udell 2020). But if we already have offline data that contains historical decision, features and

demands, this decision dependency property is convenient for our prescriptive framework to make a single

period assortment decision. An online approach first predict the demands for a given type of customer then

optimize the assortment decision, while our framework optimize the assortment decision directly.
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1.3 Literature Review

The fusion of data-driven contextual optimization has become more and more popular in recent years. In this

section, we provide a review on contextual optimization and stochastic models with decision dependency

and compare them with our approach.

Estimate-then-optimize models. The most relevant stream of research is the estimate-then-optimize (ETO)

paradigm. ETO first gives an estimation of the conditional distribution given the context feature, before

optimizing the decision under the conditional distribution. The most related work is that of Bertsimas and

Kallus (2019), who proposed a general nonparametric approach to solve the prescribe optimization prob-

lem. They estimated the conditional distribution using ML methods – for example, nearest neighbor and

decision tree. The input of such ML methods were features, and decision variables if the decision can affect

uncertainty. The output of the ML methods were treated as the sample weight, which was used to directly

estimate the true objective. Bertsimas and McCord (2019) further extended the work by adding the penalize

term into the objective. Compared to our work, they bypassed the difficulty of computation under decision-

dependency. In fact, Bertsimas and Kallus (2019) only gave the solution approach when tree regression

method is adopted in the estimation step, otherwise the decision-dependent model can only be solved by

discretization (see Theorem 4 in Bertsimas and Kallus (2019)). Srivastava et al. (2021) further designed

a regularized approximation to guarantee the out-of-sample performance based on the Nadaraya-Watson

kernel regression. And Lin et al. (2022) adopted this ETO framework to a risk-averse newsvendor problem.

However, these works assumed that the stochastic parameters are independent of decision variable. It is still

not clear how to handle the decision-dependent property, which must be addressed in our work.

Apart from nonparametric regression by ML methods, another way to approximate the objective is to use

the sample average approximation (SAA). The SAA method is to approximate the conditional expectation

by averaging historical samples (Kleywegt et al. 2002, Homem-de Mello 2001). Feng and Shanthikumar

(2022) pointed out that a pure SAA approach will cause overfitting. Therefore, common approaches includ-

ing adding a regularizer or constraints that can control the predicted profit variability (Levi et al. 2015, 2007,

Cheung and Simchi-Levi 2019, Qin et al. 2022). Kannan et al. (2022) proposed an SAA framework with

covariate data. However, SAA still assumes thee independence of stochastic parameters to decisions and

thus cannot be directly applied to the decision dependent model.

Another stream of works adopt the policy-based paradigm and directly optimize parameterized policies.

Ban and Rudin (2018) adopted the linear decision rule and solved the newsvendor model by optimizing

the parameters in the linear decision. They proved its superiority to SAA approach. Apart from the linear

decision, Zhang and Gao (2017) and Huber et al. (2019) adopted the neural network to parameterize the

decision. However, these approaches still imposed the independence of stochastic parameters to decisions.

In contrast, our framework can estimate the expectation conditioned on both side information and decisions,

and thus provide a clear way to deal with the decision-dependent property.
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Integrate optimization models. Another stream of work on contextual optimization is the integrate opti-

mization, which is an end-to-end framework that integrates the prediction and the optimization step. One

type of integrate optimization model is to learn the conditional distribution. Donti et al. (2017) modeled

the conditional distribution in a parametric manner. They showed that their task-based learning model

outperforms MLE estimation approach in most cases. Grigas Paul (2023) proposed an estimate-optimize

framework that, where the conditional distribution was estimated by a hypothesis class and the decision

was optimized by the ERM principle with regularized oracle. Compared to their research, our framework

does not need to presume the hypothesis class, thus can better deal with situations with a lack of distri-

bution information. Kallus and Mao (2022) estimated the conditional distribution by a random forest that

can directly optimize the downstream decisions. Though the estimation of the distribution conditioned on

side information has been well-established, existing research does not provide a clear way to estimate the

distribution of decision.

The other model focuses on designing the loss function in the prediction step to meet the subsequent

optimization goal. Elmachtoub and Grigas (2022) designed a new SPO+ loss function for SPO paradigm

to address the intractability for the traditional SPO loss function. They proved the consistency result for

the SPO+ loss function and provided practical computational approaches for linear predictor cases, and

the generalization bounds of SPO was provided in El Balghiti et al. (2022). Compared with their work,

our framework can solve both convex and non-convex cases. The SPO paradigm has been extended to

several contextual optimization problems. In Butler and Kwon (2023), they extended the SPO framework

to the two-stage linear programming model and designed a convex approximation for the loss function.

And the SPO framework was also adopted in combinatorial optimization problems and mixed integer linear

programming (MILP) problems (Mandi et al. 2020, Jeong et al. 2022). The SPO framework provides a new

prediction paradigm that can minimize the decision error, but it still cannot handle the condition when the

decision can affect the distribution of unknown parameters.

Other existing studies investigated the task-based end-to-end optimization models. For the linear pro-

gramming problem, Cristian et al. (2022) proposed a neural network framework that can learn to solve

the downstream linear programming problems. Their end-to-end model could be solved with exact deriva-

tives. For the non-differentiable case, Wilder et al. (2018) proposed a decision-focused learning framework

for combinatorial problems. They overcame the non-differentiating property by considering the KKT con-

ditions of the continuous relaxation of the combinatorial problem. And Mandi and Guns (2020) further

investigated the homogeneous self-dual embedding of the relaxed MILP problem. Similar to their works,

our objective function is also non-differentiable, and we also overcome the challenge of computing the gra-

dient for the end-to-end optimization model, but we overcome this by approximating the gradient of true

expectation, rather than differentiating the continuous relaxation of the objective function.
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To summary, most CSO frameworks assumed the independence of stochastic parameters on decision vari-

ables. It is hard to extend existing CSO to the decision-dependent context since the estimation of distribution

conditioned on decision variables is seldom discussed. There are some works related to CSO problems with

decision-dependent uncertainty (Bertsimas and Kallus 2019, Harsha et al. 2021), but they either focused on

a specific problem (e.g. newsvendor pricing problem), or did not provide a way for optimization. To fix this

gap, our framework provides a computable optimization approach by the proposed CGD algorithm.

Models with decision dependency. Though the decision-dependent property has not been fully studied

in the field of contextual optimization, it has been widely studied in operations management (OM) mod-

els, especially revenue management problems such as dynamic pricing. We refer to den Boer (2015) for

a comprehensive review on the dynamic pricing problems. We find that most dynamic pricing models are

parametric or impose some assumptions on the distribution form, for example, the additive demand (Biswas

and Avittathur 2018, Wang and Chen 2015) and multiplication demand (Kazaz and Webster 2011, Salinger

and Ampudia 2011). For the nonparametric and distribution-free models, Besbes and Zeevi (2009) studied

an online learning dynamic pricing policy, and Chen et al. (2019) further extended to the replenishment

policy. Similar to their work, we also adopt a nonparametric setting without the knowledge of either the dis-

tribution or dependency function. But we focus on a single-period problem rather than a multi-period online

learning setting. Liu et al. (2021) proposed a coupled learning enabled optimization (CLEO) algorithm to

solve the stochastic programming models with decision-dependent uncertainty. The CLEO algorithm esti-

mated the conditional distribution by local linear regression within a delicately designed trust region. But

the convergence of CLEO algorithm relies on the regression assumption of the decision variable, that is,

y = φ(x)+ ε in (1), while it is still not clear how to estimate the conditional distribution when the stochastic

parameters y cannot be constructed as a regression model of the decision variable x, which is commonly

seen in practice. For example, when the variance is also dependent on the decision variable, the error item

ε also changes with decision x. Furthermore, compared with the CLEO algorithm for SP problems without

contextual information, we introduce the impact of contextual information into our framework.

There are other stochastic programming (SP) models that investigated the decision-dependent property

(Goel and Grossmann 2006, Larson et al. 2019). Dupačová (2006) solved the SP model when the distri-

bution is dependent on the decision. Mendler-Dünner et al. (2020a) proposed a repeated gradient descent

and provided an iterative approach to solve the decision-dependent SP problem. These SP works bypassed

issues of the estimation step. They either assumed that the distribution is known or estimated the distribution

by sampling, which cannot be realized in our setting. Moreover, while Mendler-Dünner et al. (2020a) only

investigated the performance under strongly convex conditions, we extend the performance analysis of the

algorithm to general cases. Liu et al. (2024) gave a gradient approximation approach through an bayesian

approach, while their distribution function f (y; x,θ) needs to be parameterized by θ and the gradient esti-

mator that contains Eπt [ f (·; x,θ)] is hard to compute when the specific form of f (y; x) is unknown.
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Another stream of related work investigated decision-dependent property from the perspective of robust

optimization (RO) and distributionally robust optimization (DRO). Luo and Mehrotra (2020) constructed a

decision-dependent robust ambiguity set to solve a stochastic resource allocation problem. And Noyan et al.

(2021) constructed the ambiguity set by Wasserstein distance. These approaches typically relied on some

priori knowledge about the distribution family or distribution map, while our framework does not rely on

the knowledge about the distribution family and the dependency form.

To summarize, most existing decision-dependent models adopted a parametric way to estimate the condi-

tional distribution or assumed the regression relationship between decision variables and stochastic param-

eters. In contrast, we consider a nonparametric and distribution-free approach and utilize the context infor-

mation to solve the problem. Hence, our algorithm can be used for more complex distribution and decision-

dependency cases.

Organizations

The rest of the paper is organized as follows. In Section 2, we formally state the model and assumptions,

as well as the intuition of the contextual gradient, we further investigate the convergence property of the

contextual gradient. In Section 3, we propose the CGD algorithm and provide its convergence under convex

and non-convex cases. In Section 4, we conduct the numerical experiment on the CGD algorithm and

compare it with other existing solution approaches. Finally, Section 5 concludes the paper.

Preliminaries

For simplicity of notation, we use x ∧ y to denote min{x, y}, and (x)+ to denote max{x,0}. We let ∇ be

the gradient denotation, and ∂ denote the subgradient set. Let x = (x1, ..., xd)
T . The subscript denotes the

corresponding coordinate of a vector, and 1 denotes the all-one vector. We use ‖ · ‖ to denote l2 norm for

vectors and matrix. A function f is L−Lipschitz continuous on x ∈ X if ‖ f (x1)− f (x2)‖ ≤ L‖x1 − x2‖ for

any x1, x2 ∈ X . A function f is γ−strongly convex if f (x1)− f (x2)−∇ f (x1)
T (x1 − x2)≥ γ‖x1 − x2‖2. We

use [N] := {1, ...,N} to denote the subscript set.

2 Problem Setting and Contextual Gradient Formulation

In this section, we formally introduce the decision-dependent contextual optimization problem, as well as

the concept of the contextual gradient.

2.1 Problem Setting and Assumptions

Throughout the paper, we consider a contextual optimization model with decision dependency, where the

distribution of model parameters depends on both the contextual features and decision variables. Specifi-
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cally, we focus on the task of minimizing the expected objective function given the contextual features and

history datasets:

min
x

g(x) ∆
=Ey∼ f (y;x,z)[l(x, y)]

s.t. x∈ X ,
(2)

Here, x is the decision variable, z is the observed contextual information, and y is the random model param-

eter. Moreover, f (y; x, z) denotes the probability density function of y, indicating that the uncertainty of

y is dependent on x and z. The objective function is denoted by l(·, ·). We assume the feasible region X

is known with certainty. Apart from the parameters in (2), the DM also has historical decision samples

Dn = {xi, zi, yi}n
i=1.

We make several assumptions about the optimization problem (2).

ASSUMPTION 1 (Same bounded range). The value range of a random parameter y remains the same

under any x, and the value range of y is bounded.

In practice, Assumption 1 is usually satisfied since the stochastic model parameters are usually bounded.

For example, the stochastic demand should be positive and there shall typically be an upper bound on it.

We can take the union set of the value ranges of y under different x and assign the probability outside of the

distribution y|x as 0. We denote the range and its volume as Ω and SΩ.

ASSUMPTION 2 (Differentiation–integration exchange). We assume that l(x, y) is differentiable in X,

and there exists L1(y) function g(y), |g(y)≥ n|l(x+ 1
n , y)− l(x, y)| for all x∈ X and y∈Ω.

Assumption 2 is the assumption of Lebesgue Dominated Convergence Theorem, which implies that we

can change the order of integration and differentiation when calculating the derivative of the integral of

l(x, y) (see Theorem 2.27 in B.Folland (1999)). That is,

∇x

∫
l(x, y) f (y; x, z)dy =

∫
∇x(l(x, y) f (y; x, z))dy,

which enables us to access the derivative of the objective function. This assumption is reasonable because

most objective functions are integrable and bounded at almost everywhere in practice. In the following, we

assume that the objective function satisfies Assumption 2.

We also assume that the distance between the decision-dependent distributions under different decisions

can be bounded by the distance between the two decisions.

ASSUMPTION 3 (ε-sensitivity). We assume that the distribution map f (y; ·, z) is ε-sensitive to decision

variable. That is, for all x1, x2,

W1( f (y; x1, z), f (y; x2, z))≤ ε‖x1− x2‖2, (3)

where W1 denotes the earth mover’s distance (Rubner et al. 2000).
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Intuitively, Assumption 3 ensures that the difference between decision-dependent distributions is not too

large under different decisions x1, x2. Therefore, when analyzing the gap between the approximate solution

and the optimal solution, we can convert the difference between expectations under different distributions

into the distance between decision variables.

ASSUMPTION 4 (Lipschitz continuous and bounded gradient). l(x, y) is lipschitz continuous in both x

and y and its gradient in x in bounded. That is,

(a)|l(x1, y)− l(x2, y)| ≤ L1‖x1− x2‖, ∀x1, x2 ∈ X , y∈Ω,

(b)|l(x, y1)− l(x, y2)| ≤ L2‖y1− y2‖, ∀x∈ X , y1, y2 ∈Ω,

(c)‖∇xl(x, y)‖ ≤ Lc
3, ∀x∈ X , y∈Ω.

ASSUMPTION 5 (Lipschitz gradient and density). The cost function l(x, y) is smooth and Lipschitz con-

tinuous with a Lipschitz gradient. The probability density function of y has a Lipschitz gradient. That is,

(a)
‖∇xl(x1, y)−∇xl(x2, y)‖

‖x1− x2‖
≤ L1g, ∀x1, x2 ∈ X , y∈Ω,

(b)
‖∇xl(x, y1)−∇xl(x, y2)‖

‖y1− y2‖
≤ L2g, ∀x∈ X , y1, y2 ∈Ω,

(c)
‖∇x f (y; x1, z)−∇x f (y; x2, z)‖

‖x1− x2‖
≤ L3g, ∀x1, x2 ∈ X , y∈Ω.

Assumptions 4 and 5 are mild because the value ranges of decision variables are usually bounded in prac-

tice. Moreover, they are only required in some of the convergence results. We assume the Lipschitz property

of the objective function so that we can guarantee the approximate error of the contextual gradient will

cause a bounded error in our algorithm. We also assume that the distribution function of random parameters

has a limited change rate when the decision x changes.

2.2 Weighted-SAA Estimation

Now, we discuss the weighted-SAA approach that the contextual gradient concept centers around. Specif-

ically, Bertsimas and Kallus (2019) and Lin et al. (2022) proposed a weighted-SAA approach to estimate

the expectation conditioned on the contextual information. They adopted the weighted-SAA approach to

approximate the expected objective function:

min
x

ĝ(x) ∆
=

N

∑
i=1

wi(x, z)l(x, yi), (4)

where wi(x, z) is a weight function derived from the data by ML methods. The input of the ML model are

the contextual features, and decision variables if the model is decision-dependent. We refer the reader to

Bertsimas and Kallus (2019) and Lin et al. (2022) for the choices of the particular ML model, including

kNN, kernel regression, tree, and random forest (RF). The approximate model (4) does not restrict the form

of the weight function. For brevity, we only present the definition of the kNN weight. Other definitions of

weight functions (e.g., kernel regression, CART, random forest) can be found in Section EC.1.
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DEFINITION 1 (KNN WEIGHT). The weight function can be derived from the definition of kNN:

wkNN,i(x, z) =
1
k
I{(xi, zi) is a kNN of (x, z)}, ∀i∈ [N], (5)

where I{·} is the indicator function, [N] = {1,2, ...,N} denotes the index set, and xi is a kNN of x if and

only if |{ j ∈ {1, ...,N}\i : ‖x j− x‖< ‖xi, x‖}|< k.

The weighted-SAA estimation incorporates the similarity between the previous scenario and the current

scenario, where a scenario refers to variables that can affect random parameters in the model, including

the contextual features and decision variables. For instance, when the current scenario (x, z) and previous

scenario (xi, zi) are dissimilar, the kernel weight will be small, meaning that sample i is not similar to the

current condition and plays a minor role in the decision-making process.

However, we note that the approximate model (4) is hard to solve when the model is decision-dependent.

First, there are cross-product terms since the decision variable exists in both the weight wi(x, z) and objective

l(x, y), thus the model can be non-convex even when l(x, y) is convex on x. Second, the approximate model

can be non-smooth and discontinuous if the discrete ML estimation models are adopted (e.g., kNN and tree

models), even when l(x, y) is smooth. In this case, traditional optimization approaches cannot be directly

used for optimizing the weighted-SAA problem, and new methods are required for the estimation with the

decision dependency taken into account.

2.3 Contextual Gradient

We formally describe the concept of contextual gradient. We construct a prescriptive model to approximate

the gradient of objective in (2) using contextual information. The contextual gradient can be derived from

the true gradient of the objective function. Since we have assumed that l(x, y) is differentiable in Assumption

2, the gradient of objective function is

G(x′; z′) = ∇xE[l(x, y)|z = z′, x = x′]. (6)

And the contextual gradient is given by performing the weighted-SAA prescription to G(x) directly.

DEFINITION 2 (CONTEXTUAL GRADIENT). Given a contextual variable z′ and a decision x′, the contex-

tual gradient at x′ given dataset {zi, xi, yi} is defined as

ĜN(x′; z′) =
N

∑
i=1

w(i)(x′, z′)∇xl(x′, yi), (7)

where w(i)(·, ·) is the weight function calculated by historical data.

The contextual gradient overcomes the barrier of the loss of first-order information of the objective func-

tion in (4). In fact, the true gradient of the objective function (6) under decision dependency is hard to

calculate since the DM needs to know the correlation between current and past decisions to calculate the

cross-product terms. We can prove, in fact, that the contextual gradient is an unbiased estimation of the true

gradient, i.e., it converges to the expectation of the gradient of the objective function.
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PROPOSITION 1 (Convergence of Contextual Gradient). Suppose that the joint distribution of (x, z) is

absolutely continuous in the dataset, and its density function is bounded away from 0 to +∞ on the support

of x, z, and is twice continuously differentiable. Then the following uniform convergence over the inputs to

the weights (x′, z′), for some cN→∞, almost surely,

lim
N→∞

sup
‖x′‖+‖z′‖≤cN

∣∣ĜN(x′; z′)−E[∇xl(x, y)|x = x′, z = z′]
∣∣= 0. (8)

Proposition 1 shows the convergence of the contextual gradient to the expectation of the gradient of the

objective function. Nevertheless, we point out that converging to the expectation of the objective gradient is

not equivalent to converging to the gradient of expected objective function. These two concepts are different

because of the existence of the decision-dependent effect.

PROPOSITION 2. Suppose the distribution of y is dependent on x, the expectation of the objective function

E[∇xl(x, y)|X = x′,Z = z′] is not equal to the gradient of the objective expectation G(x′; z′) defined in (6)

when the decision-dependency exists.

Proposition 2 indicates that the contextual gradient cannot converge to the true gradient if the contextual

model is decision-dependent because it converges to the expectation of the objective gradient instead of the

gradient of the expected objective function. However we can still embed the contextual gradient into the

gradient-based algorithms. In fact, the contextual gradient enjoys similar converging properties to the true

gradient, that is, 1) the stationary point of the expected gradient is also a necessary condition for the global

optimality, and 2) if the cost function is convex or strongly convex, the expected gradient can also guarantee

a bounded error. These two properties of the contextual gradient are in accordance with the converging

performance of true gradient, thus making the convergence of our proposed contextual gradient algorithm

possible.

3 Algorithm Design and Convergence Analysis

In this section, we present ideas behind the design of the CGD algorithm and derive convergence guar-

antees for it. Herein, we focus on the case of non-constrained condition (i.e., X = Rd). We first show the

convergence result of the CGD algorithm under the convex case and prove its error bound |g(xk
N)− g(x∗)|

of to the optimal solution in Theorem 1. And in the strong convex case, we show a stronger convergence

of the distance ‖xk
N − x∗‖ in Theorem 2. Furthermore, we extend our results to the general non-convex set-

ting and analyze the convergence property of the CGD algorithm under two types of step size choices. We

demonstrate that the CGD algorithm also converges to some stationary point with bounded expected gradi-

ent in a rate of O(ε−2). Despite the gap between the expected gradient and the true gradient of expectation,

we demonstrate that converging to some stationary point with a bounded expected gradient is a necessary

condition of optimality in Theorem 3.
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3.1 Contextual Gradient Descent

Since Proposition 1 provides a converging result of the contextual gradient to the true expected gradient,

intuitively, we can embed this contextual gradient into some gradient-based optimization algorithms, such

as the gradient descent algorithm and stochastic gradient algorithm. Based on this idea, we design the CGD

algorithm in Algorithm 1.

Algorithm 1 The Contextual Gradient Descent Algorithm
Input: initial solution x0, contextual information z, dataset {xi, zi, yi}N

i=1.

Output: solution x̂∗.

1: r = 0

2: while Stop criteria not satisfied do

3: Calculate contextual gradient ĜN(xr; z) by (7)

4: Select step size ηr

5: Let xr+1 = xr−ηrĜN(xr; z)

6: r = r + 1

7: end while

8: x∗ = xr

The contextual gradient descent follows a similar descending paradigm to the gradient descent algorithm.

We note that the step size must be suitably determined to implement the CGD algorithm. We adopt the

diminishing step size and the Armijo step size in our work. The selection of the step size will also affect

the convergence result, which is to be analyzed in the next section. The detailed comparison between two

choices of step size can be seen in Appendix EC.4.2.

EXAMPLE 1 (EXAMPLE OF CGD ON NEWSVENDOR PRICING PROBLEM). In the newsvendor pricing

problem with contextual information, the DM need to jointly make the pricing and ordering decision to

maximize its profit. In this case, the decision variable is x = (p,q)T and the objective function is l(x, y) =

l(p,q, y) =−p(y∧ q) + cq− s(q− y)+. Since l(p,q, y) is not smooth when q = y, we study its contextual

subgradient instead.

∂p,ql(p,q, y) =

{[− (y∧ q)

− (p− c)+ (p− s)e

]
: e∈ [I{q > y}, I{q≥ y}]

}
. (9)

The subgradient set only contains one element almost everywhere, therefore we can still embed the con-

textual subgradient into the gradient descent algorithm in Algorithm 1. Specifically, in each iteration, we

first calculate the w(i)(pr,qr, z) by the weighted-SAA approach, then calculate the contextual gradient

ĜN(pr,qr; z) = ∑
N
i=1 w(i)(pr,qr, z)∂p,ql(pr,qr, yi). When qr = yi, we select any element from the subgradient

set ∂p,ql(pr,qr, yi).
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As a result, the CGD algorithm can retain both the first-order information of the original objective func-

tion and the contextual information by directly prescribing the gradient. (8) implies that the contextual gra-

dient is an unbiased approximation to the expected gradient. Therefore, the convergence of CGD algorithm

and typical gradient descent may share some commonalities. That is, we can expect the convergence of

CGD algorithm to global optimality under convex case, and to a stationary point under general non-convex

cases.

3.2 Convergence Analysis

In this subsection, we analyze the convergence of the CGD algorithm under both the convex and non-convex

case. Despite the inconsistency of expected gradient and true gradient of expectation in Proposition 2, we

still prove the error bound in the convex setting and an asymptotic convergence to a stationary point in

the non-convex setting. Intuitively, we overcome this barrier by showing that ĜN(x, z) is also a reasonable

descent direction in our proof.

3.2.1 Convergence under Convex Case

In this subsection, we focus on the convergence guarantee of the CGD algorithm when l(x, y) is convex on

x. We first give the error bound under general convex case in Theorem 1.

THEOREM 1 (Error Bound in Convex Case). Suppose that l(x, y) is convex on x and Assumptions 2, 3,

4(b) and 4(c) are satisfied. Denote xr
N as the rth iteration of CGD algorithm based on an N-samples dataset.

Then for any small ζ > 0, there exists N0, when the sample size N > N0, after k iterations,

min
0≤r≤k
{E f (y;xr

N ,z)[l(xr
N , y)]−E f (y;x∗,z)[l(x∗, y)]} ≤

εL2 ∑
k
r=0 ηr‖x∗− xr

N‖
∑

k
r=0 ηr

+
‖x0

N − x∗‖2 +(Lc
3)

2
∑

k
r=0(η

r)2

2 ∑
k
r=0 ηr

+
3
2

ζ.

Proof sketch: the main difficulty in this proof is to handle the decision dependent effect: since the distri-

bution of y changes while x moves. We solve this problem by separating out the decision dependent error by

Lemma EC.2. Specifically, we convert the expectation gap under different x and distribution f (y; x, z) into

the expectation gap under different different x but the same distribution and we get

g(xk
N)− g(x∗)≤ εL2‖x∗− xk

N‖+E f (y;xk
N ,z)[l(x

k
N , y)− l(x∗, y)].

Note that this conversion causes additional error. And this additional error goes to the first term in the right

side and finally become the decision dependent error. For the second term we follow the standard analyze

of gradient descent: we first study the recursive relationship of the sequence ‖xk
N − x∗‖. Then we substitute

the second term into the recursive formula by the convexity of l(x, y), thereby obtaining the relationship
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between the second term and ‖xk+1
N − x∗‖ − ‖xk

N − x∗‖. Finally, we obtain the upper bound of the second

term by adding the recursive equation from r = 0 to k.

Theorem 1 is a statement about the minimum functional error between the generated sequence xr
N and the

optimal solution x∗ after k iterations. Except for the 3
2 ζ term which is related to the sample size and approx-

imation error, the remaining error bound can be divided into two parts. The first term on the right-hand side

is the bound on the decision-dependent error, which comes from the decision-dependent characteristic (see

proof of Theorem 1). We observe that the decision-dependent error depends on the distribution distance ε

and the Lipschitz constant L2, which indicates that the decision-dependent error is influenced by the sensi-

tivity of distribution shift to the variation of decision variable x and random parameter y. We also note that

the decision-dependent error will decrease as the solution xr gets closer to the optimal solution x∗. When the

decision space is bounded, the decision-dependent error can be bounded by εL2DX , where DX denotes the

maximum distance in the decision space (for example, the gap between the maximal and minimum prices

in a dynamic pricing problem).

The second term on the right-hand side comes from the internal error of the typical gradient descent

algorithm. The only way to decrease the internal error is to continue the iterative process. As the step size

ηr is often decreasing and less than 1, the internal error term will converge to zero as k increases.

Although Theorem 1 gives the error bound of the objective function, it is still not clear how the solution

sequence converges to the optimal point. Therefore, we investigate the distance to the optimal solution

under the strongly convex condition. Mendler-Dünner et al. (2020a) proves the convergence result when

the conditional distribution y|x is known in advance. Similar to their work, we prove by bridging the CGD

solution and optimal solution by a intermediate stable point.

DEFINITION 3 (STABLE POINT). Under contextual information z, The stable point is the fix point of the

following iteration principle:

x = arg min
x

E f (y;xPS,z)[l(x, y)]. (10)

We then state the distance bound between the solution sequence of the CGD algorithm and the stable

point xPS in Theorem 3.

PROPOSITION 3 (Distance to stable points). Suppose that Assumptions 2, 3, 5(a) and 5(b) are satisfied,

l(x, y) is γ-strongly convex in x, and at least one stable point xPS exists. We denote A = γ− εLc
1 and B =

Lc
1

√
1+ ε2. For the case A≥ 2B≥ 0 we take a constant step size η that satisfies

4B2
η

2− 2Aη+ 1 = 0.

Then, for any small ξ > 0, there exists a sample size N0 such that, for all N > N0, we have the following

conclusion after k+ 1 iterations:
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Case 1. If 1− 2ηA+ 2η2B2 > 0, then

‖xk+1
N − xPS‖ ≤Ck+1‖x1

N − x∗‖+ ξη
1−Ck+1

1−C
, (11)

where C =
√

1− 2ηA+ 2η2B2 < 1.

Case 2. If 1− 2ηA+ 2η2B2 ≤ 0, then for any K > 0, there exists k > K such that

‖xk+1
N − xPS‖ ≤ (1+

√
2)ξη. (12)

Proof sketch: The main difficulty of this proof is also to handle the error caused by the approximation.

Since

‖xk+1
N − xPS‖2 ≤ ‖xk

N − xPS‖2− 2ηĜN(xk
N)

T (xk
N − xPS)+ (η2)‖ĜN(xk

N)‖2,

we can observe that different from the analysis in Mendler-Dünner et al. (2020a), the third term is the

contextual gradient rather than the expected gradient. We bound the third term by the unbiased property of

contextual gradient combined with Assumption 4(c). For the second term, we can use existing conclusion to

bound E f (y;xk
N ,z)[∇xl(xk

N , y)]
T (xk

N − xPS). Thus, we write ‖xk+1
N − xPS‖2 in the form of xk

N and then we can find

the recurrence relation of ‖xk+1
N − xPS‖2.

Proposition 3 specifies the distance to the stationary point under the strongly convex condition. In Case 1,

the bound can also be divided into two components: the first term comes from the initial distance between x1
N

and xPS and the parameter C, which is related to the strongly convex parameter γ, the Lipschitz continuous

parameter Lc
1, and the distribution distance ε. When the convexity is very strong, and the objective function

and decision-dependent distribution do not react sensitively to the decision variables, C is small and the first

term decreases rapidly. This result is reasonable because strong convexity increases the converge speed and

the decision-dependent effect diminishes as Lc
1 and ε decrease. The second term relates to the approximate

error. As shown in Proposition 1, ξ becomes sufficiently small when the sample size is large. Therefore, we

can reduce the second term by increasing the sample size.

In Case 2, we prove that the distance will decrease when it exceeds the bound (1 +
√

2)ξη until it

reaches the bound again. Therefore, we can prove that the distance will either decrease or fluctuate around

(1+
√

2)ξη.

We now focus on the distance to the optimal solution. We have investigated the distance bound between

the solution sequence and the stable point xPS in Proposition 3. In the following, we show the relationship

between the stable point and the optimal solution.

LEMMA 1 (Theorem 4.3 in (Mendler-Dünner et al. 2020a)). Suppose that l(x, y) is Ly-Lipschitz in y and

strongly convex, and that Assumption 3 is satisfied. Then, for every stable point xPS, we have

‖x∗− xPS‖ ≤
2Lyε

γ
.
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Lemma 1 gives the distance bound between the stable point and the optimal solution in the strongly

convex case. Therefore, we can now state the upper bound of the solution error of CGD algorithm.

THEOREM 2 (Error bound under strongly convex case). Denote x∗ as the optimal solution of g(x) =

E f (y;x,z)[l(x, y)] and l(x, y) is γ−strongly convex. Assume that γ− εLc
1 ≥ 2Lc

1

√
1+ ε2, and set the step size

η according to Proposition 3. After k iterations, for any ξ > 0, there exists a sample size N0 such that, if

N > N0, the solution gap is bounded by

|xk
N − x∗| ≤ 2L2ε

γ
+max

{
Ck+1|x1

N − x∗|+ ξη
1−Ck

1−C
, (1+

√
2ξη)

}
,

where C is defined in Proposition 3.

In summary, when the objective function is strongly convex, we first prove the distance bound to an

intermediate stable point. Since the stable point is close to the optimal solution, we can then prove the

distance bound to the optimal solution of the CGD algorithm under the strongly convex case. The error

bound in Theorem 2 can also be divided into two parts. The first term is related to the decision-dependent

parameter ε, implying that it stems from the decision-dependent effect of the contextual model. The second

part is the inertial error of the CGD algorithm, which is decreasing to the iteration number k and related to

the choice of step size η.

3.2.2 Extension to Non-convex Case

Up to now, we have assumed the convexity of the objective function. However, in most practical settings the

objective function non-convex to the decision variables. In the dynamic pricing models, the revenue may

have a complex functional relationship to the pricing decision. To investigate the performance of the CGD

algorithm under more general cases, we extend the convergence analysis to this non-convex case. Similar

to the convergence result of typical gradient descent, we study the convergence of CGD algorithm to a

stationary point, that is, the point x∗ where E f (y;x∗,z)[∇xl(x∗, y)] is small.

PROPOSITION 4 (Convergence under diminishing step size). Suppose Assumptions 2, 3, 1, 5 and 4(a)

hold, that the objective function l(x, y) is twice differentiable in x and its absolute value is bounded by a

constant L4. If the gradient of the distribution density is also bounded by a constant L5, and the step size ηr

is diminishing with ∑
∞

r=0 ηr = ∞, there exists a sample size N0, when N > N0, any limit point of the sequence

generated by the CGD algorithm is a stationary point of the cost gradient expectation.

if lim
N→∞

lim
r(∈K )→∞

xr
N = x̄, then E f (y;x̄,z)[∇xl(x̄, y)] = 0. (13)

PROPOSITION 5 (Convergence under Armijo step size). Under Assumptions 2, 3, and 4(a), suppose that

the CGD algorithm adopts the Armijo step size with σ, and that the sample size N is sufficiently large. Then,

any limit point x̄ of the sequence generated by the CGD algorithm has a bounded expected gradient.

if lim
N→∞

lim
r(∈K )→∞

xr
N = x̄, then ‖E f (y;x̄,z)[∇xl(x̄, y)]‖ ≤

εL1

1−σ
. (14)
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Propositions 4 and 5 state that the CGD algorithm converges to the stationary point of the expected

gradient. Note that this conclusion relies on Assumptions 1 and 5, which are strong conditions and may

not be generally satisfied. Furthermore, when the constants SΩ,L4,L5 are large, this convergence result may

have a poor performance in practice. Compared with the diminishing step size, the expected gradient for

CGD with Armijo step size is not guaranteed to converge to 0, but this convergence result holds under a

milder condition where Assumptions 1 and 5 may not hold. And we can then derive from Theorem 3 that

(14) is a necessary condition of optimality.

Then we investigate the convergence rate of the CGD algorithm. Compared with typical gradient descent,

which only requires O(1/ε2) iterations to obtain an ε−stationary solution, the CGD algorithm also requires

O(1/ε2) steps to converge to a range with expected gradient upper bound.

PROPOSITION 6. Suppose Assumptions 2, 3, 4 and 5(a) hold, when N → ∞, with fix step size η ≤
min{ 1

L1g
, 1

Lc
3
}, we have

min
r=0,...,k

‖E f (y;xr
N ,z)[∇xl(xr

N , y)]‖2 ≤
2(E f (y;x0

N ,z)[l(x
0
N , y)]−E f (y;x∗,z)[l(x∗, y)])

η(k+ 1)

+
Lc

3L1ε

2
.

(15)

Like the convergence result in Proposition 5, Proposition 6 shows that CGD with constant step size will

converge to a point with limited expected gradient, and the convergence rate is O(ε−2), which corresponds

to the O(ε−2) lower bound of Agarwal et al. (2012). The bias term Lc
3L1ε

2 to stationary point implies the

error caused by decision dependency. In specific, it rises from the heterogeneous distribution under different

decisions.

The above convergence results are relevant to the expected gradient. However, according to Proposition

2, the expected gradient is not equal to the gradient of expected objective function. In other words, the

station point of expected gradient is not the stationary point of the true expected objective function g(x) in

(1) if we analogize the CGD algorithm to the typical GD algorithm. Though this inconsistency exists, we

prove that similar to the GD algorithm, the convergence to the expected gradient is a necessary condition of

optimality.

THEOREM 3 (Necessary condition of optimality). If x∗ is the optimal solution for a decision-dependent

problem minx E f (y;x,z)[l(x, y)], where l is an L1 Lipschitz function and Assumptions 2 and 3 are satisfied, then

‖E f (y;x∗,z)[∇xl(x∗, y)]‖ ≤ L1ε.

Theorem 3 builds a connection between the CGD algorithm and optimality condition. It indicates that

one necessary condition for optimality is that the norm of the expected gradient should not be too large.

For the diminishing step size, the expected gradient will be sufficiently small, thus satisfying the necessary

condition. For the Armijo step size, the necessary bound in Theorem 3 is actually the upper bound when

σ = 0 in Proposition 5. Therefore, although the converging point of CGD algorithm is not the zero point of

the expected objective function, it still satisfies the necessary condition of optimality.
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4 Numerical Results

In this section, we validate the convergence performance of the CGD algorithm and compare its perfor-

mance against other methods. In our experiments, we use both simulated data and real-world data from the

electricity industry to validate the effectiveness of the proposed CGD algorithm. Specifically, we compare

the performance of the proposed CGD algorithm with the prescriptive approach in Bertsimas and Kallus

(2019) and the estimate-then-optimize approach under the linear decision assumption. All computations

were carried out in Python 3.10 on an Intel i7-9750H processor with 32.0 GB of RAM.

4.1 Data Description and Experiment Setup

We conduct numerical experiments on two datasets. The first dataset comes from a real-world power plant

pricing scenario. This dataset describes the electricity demand and price situation in an electricity plant.

The factors affecting the electricity demand include temperature, solar exposure, etc. On a daily basis, the

manager needs to decide on the electricity price to maximize the revenue. The main challenge is that the

manager does not know the functional relationship between price and demand under the current features,

and can only estimate the demand based on historical pricing and current feature. Note that the intuitive

inverse relationship between electricity consumption and price may not be clear in the dataset, since a lower

demand may lead to a lower pricing decision in practice. This also reflects the importance of decision-

dependency in our model. The source of the real-world dataset is given in Section EC.4.1. We denote this

dataset as Dreal .

The second dataset contains simulated data. We generated demand, price, and feature data from a known

distribution and functional relationship. The aim was to maximize the revenue through optimal pricing and

order quantity decisions. The underlying demand distribution and parameter values of this dataset are given

in Section EC.4.1. We denote this dataset as Dsimu.

In our experiment, we first calculate the contextual gradient by (7). The hyperparameters of each ML

method (e.g., kNN, kernel regression, CART, and RF weighting) are tuned through a grid search. The initial

values are (p0,q0) = (15,30) in Dsimu and p0 = pmid(Dreal) in Dreal , where pmid(Dreal) denotes the median

of historical pricing decision. In the simulated dataset Dsimu, we evaluate the performance by the optimality

gap, i.e., (E f (y;x∗,z)[l(x∗, y)] − E f (y;x,z)[l(x, y)])/E f (y;x∗,z)[l(x∗, y)]. Note that the true distribution f (y; x, z) is

known while evaluation, while it is unknown when we are solving the problem by CGD algorithm. In the

real dataset Dreal , however, we do not know the true distribution, hence we cannot calculate the true revenue

of the output decision. In this case, we evaluate the solution quality by comparing the output decision to the

practical pricing decision in the test dataset. For any (x j, z j, y j) in the test set, the CGD algorithm outputs a

solution x̂ by z j, and the performance is evaluated by the deviation |x̂− x j|. Since the demand of electricity

companies is similar at the same time of year, we can assume that their pricing decisions are relatively

reasonable in practice. Therefore, it can be a benchmark to evaluate the solution quality of CGD algorithm.
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4.2 Convergence Performance

In this section, we validate the convergence performance of the CGD algorithm from different aspects.

Convergence under convex case.

We first perform the convergence of CGD algorithm under different weighting approaches under the convex

price-only newsvendor pricing problem (i.e., fixing the ordering decision) in the simulated dataset Dsimu.

The iteration stops when the step size is below 10−5 or the solution exceeds the upper or lower bound, the

convergence results are shown in Figure 1(a). We also extend to a strongly convex case by adding a quadratic

penalize term into the objective function l(x, y). the convergence results under the strongly convex case are

shown in Figure 1(b). We observe that in both convex and strongly convex cases, the optimality gaps are less

than 5%. We also observe that each algorithm has a slight deviation from the optimal solution before the

iterations stop. This deviation reflects the approximation error of the weight SAA approximation method.

This illustrates why we use the Armijo rule to select the step size: the Armijo rule ensures that the estimated

function value decreases monotonically, that is, the true function value will not deviate significantly from the

local minimum. A detailed performance comparison between two step sizes is provided in Section EC.4.2.
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(b) Convergence under strongly-convex case

Figure 1 Comparison CGD algorithm with different weight under convex and non-convex conditions on Dsimu.

Convergence under non-convex case.

We then investigate the convergence of the algorithm under the non-convex setting. Specifically, we jointly

optimize the pricing and ordering decision in the newsvendor pricing problem on the simulated dataset

Dsimu, where l(x, y) is non-convex to the decisions x = (p,q). The performance of our algorithm is evaluated

by the true expected objective function, which is calculated by the predetermined demand distribution in the

simulation setting. We can observe from Figure 2(a) that all four models descend toward the local optimum.
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Kernel regression and CART exhibit the best performance, indicating that they have more accurate estimates

of profit and gradient. Note that the priority of these two weighting methods does not always hold true,

but depends on whether the weight method gives an accurate prescription to the conditional distribution of

the demand. The optimality gaps to the local optimum are shown in Figure 2(b), the CGD algorithm has

a relatively high convergence rate. Among the four weight functions, the optimality gaps of kNN, kernel

regression, and CART are less than 5%.
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Figure 2 Convergence of CGD algorithm with different weight under non-convex condition on Dsimu.

Sample Efficiency.

To verify the performance of the model under small sample conditions, we study the performance of the

CGD algorithm under different sample sizes on Dsimu. We use the kNN weight method with k = 20 and

generate five stochastic features for each sample size. The average, maximum, and minimum optimality

gaps are shown in Figure 3. As expected, the CGD algorithm converges to a stationary point of the true

objective with a small sample size. When the sample size is large, the optimality gap becomes more sta-

ble and decreases correspondingly, because a larger sample size provides more information about the true

distribution.

Performance on Practical Contextual Pricing Problem

We then test the performance of the CGD algorithm under the practical pricing problem in the electricity

industry. We divided Dreal into two parts, a training set (n = 1895, 90%) and a test set (n = 211, 10%).

We learn the contextual gradient based on the training set before optimizing the pricing decision based on

current contextual information in the test set. We evaluate the performance of CGD algorithm by comparing

to the practical decision in the test set. We can observe from Figure 4 that the difference between most
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Figure 3 Optimality gap under different sample sizes on Dsimu.

pricing decisions given by the CGD algorithm and the actual pricing is less than 5%. In summary, the CGD

algorithm can effectively learn the contextual information and make a reasonable pricing decision that is

close to the practice.
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Figure 4 Comparison between real pricing decision and output pricing decision on Dreal .

4.3 Comparison to Other Policies

In this section, we compare the proposed CGD algorithm with other approaches that can potentially solve

the contextual optimization problem under decision-dependent effect. The first benchmark is proposed by

Bertsimas and Kallus (2019), which is to solve the weighted-SAA prescriptive model in (4) directly by dis-

cretization (PRE+DIS). Another benchmark is an estimate-then-optimize framework that adopts the linear
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decision rule and builds a linear regression model of y to the decision variable x and contextual information

z before optimizing the decision under the regression model (LR+OPT). In the PRE+DIS approach, we

first build the prescriptive model according to (4) before finding the best solution by exploring all potential

pricing and ordering decisions. The LR+OPT approach imposes a linear context assumption to the distribu-

tion y|x, z. The linear assumption is representative since it is widely used in estimate-then-optimize models

and one can improve its generalization ability by transforming the covariate variables z (Ban and Rudin

2018, Demirovic et al. 2019). Specifically, the LR+OPT framework first estimates a linear regression model

ŷ(x, z) = α0 +αT (x, z), where the al pha0 and α are the coefficients of the linear model. Then it substitutes

the model parameter y by ŷ(x, z) before optimizing x directly.

Comparison to PRE+DIS

In the following, we compare the CGD algorithm with the discretization solution of the corresponding

weighted-SAA prescriptive model on Dsimu. In each pair of comparisons, we adopt the same ML estimate

model with the same hyperparameter setting. We compare both the optimality gap and running time. Table

1 documents the complete numerical results for the comparison between the CGD and PRE+DIS under

each ML estimate model. Results show that the CGD algorithm gains higher revenue than the discretization

method. And the time consumption of CGD is at least ten times less than PRE+DIS. We can also observe

that the optimality gap of PRE+DIS strategy under random forest estimation is extremely large. This indi-

cates that the performance of discretization relies highly on the precision of estimation, while the CGD

algorithm can still descend towards a correct direction even though the estimation is not so accurate. There-

fore, compared with the prescription then discretization method, the CGD algorithm is more robust to the

estimation quality.

Table 1 Optimality gap and running time comparison between CGD and PRE+DIS.

Strategies
kNN kernel CART RF

gap time (sec) gap time (sec) gap time (sec) gap time (sec)
PRE+DIS 10.27% 60.37 0.94% 118.14 0.96% 14.11 114.44% 91.75

CGD 1.48% 1.92 0.56% 2.04 1.99% 1.07 4.97% 5.87

Comparison to LR+OPT

Another potential solution to the contextual optimization problem under decision-dependency in existing

literature is to adopt the LR+OPT framework. To illustrate the generalization ability of both the CGD

algorithm and LR+OPT, we generated two sets of demand samples, one with a simple linear decision rule,

where the demand y is exactly linear in p,q and z (y = 60− p + 1T z + ε). This dataset is denoted as Dlin.

Another group of demand samples follows a complex multiplicative relation to the decision variable x and
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we denote this dataset as Dmul , and the parameter setting is provided in EC.4.1. We evaluate the profit

performance on both two datasets of the CGD algorithm and LR+OPT framework respectively.
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Figure 5 Comparison between CGD and LR+OPT approaches under two demand models

The results of our experiments are shown in Figure 5, where Figure 5(a) denotes the profit performance

on the test dataset, and Figure 5(b) shows the difference of CGD profit minus the LR+OPT profit on the

test dataset. We can observe that on the linear demand dataset Dlin, the LR+OPT outperforms the CGD

method. This result is not surprising because the true demand model satisfies the demand prediction assump-

tions exactly. We can observe that the gap between these two methods is not significant and CGD method

still performs well in this case. In contrast, in the complex demand distribution scenario Dmul , our CGD

method significantly outperforms the LR+OPT framework. Moreover, when the demand prediction assump-

tion deviates from the true distribution, the LR+OPT strategy sometimes generates lower profits and may

fail to converge. This result illustrates the generalization ability of the CGD algorithm. Compared with the

LR+OPT framework, the CGD algorithm adopts a distribution-free and nonparametric setting, making it

generalizable to complex distribution cases.

In summary, when there is little information about the distribution of stochastic parameters, adopt-

ing the distribution-free method results in better adaptation to a range of real-world scenarios, leading to

more robust solutions than assuming a specific distribution and decision-dependency rule for the stochastic

parameters.

5 Conclusion and Future Directions

In this paper, we propose a novel approach to solve the contextual optimization problem under decision

dependency. Compared with existing policies, the contextual gradient retains the first-order information of
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the objective function, and thus is more efficient than the discretization approach. Our CGD algorithm also

has a strong theoretical convergence guarantee under both the convex and non-convex cases and has a great

generalization ability because the method is fully nonparametric.

Much remains open and requires further investigation. First, there may exist other algorithm designs

based on contextual gradient. For example, one can embed the contextual gradient into the proximal gradient

descent algorithm and stochastic gradient descent algorithm. One may characterize distance convergence

properties. Second, In this paper, the convergence result is limited to the unconstrained setting. Efficient

algorithms are still absent for solving the constraint contextual optimization problem under decision depen-

dency.
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Dupačová, Jitka. 2006. Optimization under exogenous and endogenous uncertainty. doi:10.13140/2.1.2682.2089.

El Balghiti, Othman, Adam N. Elmachtoub, Paul Grigas, Ambuj Tewari. 2022. Generalization bounds in the predict-
then-optimize framework. Mathematics of Operations Research, 48 (4), 2043-2065. doi:10.1287/moor.2022.
1330. URL https://pubsonline.informs.org/doi/abs/10.1287/moor.2022.1330.

Elmachtoub, Adam N., Paul Grigas. 2022. Smart ”predict, then optimize”. Management Science, 68 (1), 9-26.

Feng, Qi, J. George Shanthikumar. 2022. Developing operations management data analytics. Production and Opera-
tions Management, 31 (12), 4544-4557.

Godfrey, Gregory A., Warren B. Powell. 2001. An adaptive, distribution-free algorithm for the newsvendor problem
with censored demands, with applications to inventory and distribution. Management Science, 47 (8), 1101-
1112.

Goel, Vikash, Ignacio E. Mathematical Programming Grossmann. 2006. A class of stochastic programs with decision
dependent uncertainty. Mathematical Programming, 108 355-394.

Grigas Paul, Zuo Jun Shen, Qi Meng. 2023. Integrated conditional estimation-optimization.

Harsha, Pavithra, Ramesh Natarajan, Dharmashankar Subramanian. 2021. A prescriptive machine-learning framework
to the price-setting newsvendor problem. INFORMS Journal on Optimization, 3 (3), 227-253.

Homem-de Mello, Tito. 2001. Monte Carlo Methods for Discrete Stochastic Optimization. Springer US, Boston, MA,
97-119.

Huber, Jakob, Sebastian Müller, Moritz Fleischmann, Heiner Stuckenschmidt. 2019. A data-driven newsvendor
problem: From data to decision. European Journal of Operational Research, 278 (3), 904-915. doi:https://
doi.org/10.1016/j.ejor.2019.04.043. URL https://www.sciencedirect.com/science/article/

pii/S0377221719303807.

https://api.semanticscholar.org/CorpusID:259953167
https://api.semanticscholar.org/CorpusID:259953167
https://api.semanticscholar.org/CorpusID:199465744
https://api.semanticscholar.org/CorpusID:199465744
https://www.sciencedirect.com/science/article/pii/S1876735415000021
https://www.sciencedirect.com/science/article/pii/S1876735415000021
https://pubsonline.informs.org/doi/abs/10.1287/moor.2022.1330
https://www.sciencedirect.com/science/article/pii/S0377221719303807
https://www.sciencedirect.com/science/article/pii/S0377221719303807


Article submitted to: Production and Operations Management
Article Short Title 27

Jasin, Stefanus, Chengyi Lyu, Sajjad Najafi, Huanan Zhang. 2024. Assortment optimization with multi-item basket
purchase under multivariate mnl model. Manufacturing & Service Operations Management, 26 (1), 215-232.
doi:10.1287/msom.2021.0526. URL https://doi.org/10.1287/msom.2021.0526.

Jeong, Jihwan, Parth Jaggi, Andrew Butler, Scott Sanner. 2022. An exact symbolic reduction of linear smart pre-
dict+optimize to mixed integer linear programming. International Conference on Machine Learning. URL
https://api.semanticscholar.org/CorpusID:250340791.

Kallus, Nathan, Xiaojie Mao. 2022. Stochastic optimization forests. Management Science, 69 (4), 1975-1994. doi:
10.1287/mnsc.2022.4458. URL https://doi.org/10.1287/mnsc.2022.4458.

Kallus, Nathan, Madeleine Udell. 2020. Dynamic assortment personalization in high dimensions. Operations
Research, 68 (4), 1020-1037. doi:10.1287/opre.2019.1948. URL https://doi.org/10.1287/opre.

2019.1948.

Kannan, Rohit, Guzin Bayraksan, James R. Luedtke. 2022. Data-driven sample average approximation with covariate
information.

Kazaz, Burak, Scott Webster. 2011. The impact of yield-dependent trading costs on pricing and production planning
under supply uncertainty. Manufacturing & Service Operations Management, 13 (3), 404-417.

Kleywegt, Anton J., Alexander Shapiro, Tito Homem-de Mello. 2002. The sample average approximation method for
stochastic discrete optimization. SIAM Journal on Optimization, 12 (2), 479-502.

Larson, Jeffrey, Matt Menickelly, Stefan M. Wild. 2019. Derivative-free optimization methods. Acta Numerica, 28
287 - 404.

Lee, Sanghyuk, Seunghyun Lee, Byung Song. 2022. Contextual gradient scaling for few-shot learning. 3503-3512.
doi:10.1109/WACV51458.2022.00356.

Levi, Retsef, Georgia Perakis, Joline Uichanco. 2015. The data-driven newsvendor problem: New bounds and insights.
Operations Research, 63 (6), 1294-1306.

Levi, Retsef, Robin O. Roundy, David B. Shmoys. 2007. Provably near-optimal sampling-based policies for stochastic
inventory control models. Mathematics of Operations Research, 32 (4), 821-839.

Li, Shukai, Qi Luo, Zhiyu Huang, Cong Shi. 2022. Online learning for constrained assortment optimization under
markov chain choice model. SSRN Electronic Journal, URL https://api.semanticscholar.org/

CorpusID:248333022.

Lin, Shaochong, Youhua Chen, Yanzhi Li, Zuo-Jun Max Shen. 2022. Data-driven newsvendor problems regularized
by a profit risk constraint. Production and Operations Management, 31 (4), 1630-1644.

Liu, Junyi, Guangyu Li, Suvrajeet Sen. 2021. Coupled learning enabled stochastic programming with endogenous
uncertainty. Mathematics of Operations Research, 47 (2), 1681-1705.

Liu, Tianyi, Yifan Lin, Enlu Zhou. 2024. Bayesian stochastic gradient descent for stochastic optimization with stream-
ing input data. SIAM Journal on Optimization, 34 (1), 389-418. doi:10.1137/22M1478951.

https://doi.org/10.1287/msom.2021.0526
https://api.semanticscholar.org/CorpusID:250340791
https://doi.org/10.1287/mnsc.2022.4458
https://doi.org/10.1287/opre.2019.1948
https://doi.org/10.1287/opre.2019.1948
https://api.semanticscholar.org/CorpusID:248333022
https://api.semanticscholar.org/CorpusID:248333022


Article submitted to: Production and Operations Management
28 Article Short Title

Luo, Fengqiao, Sanjay Mehrotra. 2020. Distributionally robust optimization with decision dependent ambi-
guity sets. Optimization Letters, 14 (8), 2565-2594. doi:10.1007/s11590-020-01574-3. URL
https://doi.org/10.1007/s11590-020-01574-3https://link.springer.com/

content/pdf/10.1007/s11590-020-01574-3.pdf.

Mandi, Jayanta, Emir Demirovi, Peter Stuckey, Tias Guns. 2020. Smart predict-and-optimize for hard combinatorial
optimization problems. Proceedings of the AAAI Conference on Artificial Intelligence, 34 1603-1610. doi:
10.1609/aaai.v34i02.5521.

Mandi, Jayanta, Tias Guns. 2020. Interior point solving for lp-based prediction+optimisation. ArXiv, abs/2010.13943.
URL https://api.semanticscholar.org/CorpusID:225076353.

Mendler-Dünner, Celestine, Juan Perdomo, Tijana Zrnic, Moritz Hardt. 2020a. Stochastic optimization for performa-
tive prediction. International Conference on Machine Learning, 7599-7609.

Mendler-Dünner, Celestine, Juan C. Perdomo, Tijana Zrnic, Moritz Hardt. 2020b. Performative prediction.
arXiv:2006.06887, .
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E-Companion for Tackling Decision Dependency in Contextual
Stochastic Optimization

EC.1 Definition of Weight Functions

In this section, we present some definitions of the weight functions that can be used to construct the approx-

imate model (4).

DEFINITION EC.1 (KERNEL REGRESSION WEIGHT). We can use the kernel function that measures the

distances in (x, z) to construct the weight function:

wKR,i(x, z) =
Kh ((x, z)− (xi, zi))

∑
n
j=1 Kh((x, z)− (x j, z j))

, (EC.1)

where Kh : Rdim(z)+1 → R is the kernel function with bandwidth h. Common kernel functions include the

uniform kernel, triangular kernel and Gaussian kernel. If not noted, the kernel functions below refer to the

Guassian kernel function:

K(z) =
1√
2π

exp−‖z‖
2
2/2. (EC.2)

DEFINITION EC.2 (CART WEIGHT). The CART weight functions are given by:

wCART,i(x, z) =
I{R(x, z) = R(xi, zi)}
|{ j : R(x j, z j) = R(x, z)}|

, (EC.3)

where R : X ×Z→{1, ..., r} is the function that maps features to the r leaves on the CART. In the CART, a

leaf is a collection of sample points that are classified to the same group.

DEFINITION EC.3 (RANDOM FOREST WEIGHT). The random forest weight functions are given by:

wRF,i(x, z) =
1

NE

NE

∑
e=1

wCART,i,e(x, z), (EC.4)

where NE is the number of estimators in the random forest, and wCART,i,e(x, z) is the CART weight of the

eth estimator in the random forest.

One of the advantage of random forest weight is that the variance will not get large as NE increases,

while the estimation will be more accurate. The only cost is that it will consume more time to calculate the

random forest weight if NE become larger.

EC.2 Description of Solution Methods

In this section, we explain the solution methods adopted in the numerical experiment section.

EC.2.1 Diminishing Step

The diminishing step adopt the step size ηr such that ηr > ηr+1 and ∑
∞

r=0 ηr = ∞. A typical choice is ηr =

C/(r + 1), where C is a constant that can be adjusted to suit different problems.



ec2

EC.2.2 Armijo Step

Let f (·) denote the objective function we want to minimize. The Armijo principle chooses the step size ηr

by the following steps (we denote the ascent direction as dr) in algorithm 2

Algorithm 2 Armijo step size
Input: iteration solution xr, contextual information z, α0, β∈ (0,1), σ∈ [0,1), tolerance ε.

Output: step size ηr.

1: ηr = α0

2: xr+1 = xr +ηrdr;

3: while ηr ≥ ε and f (xr)− f (xr+1)< σηr(ĜN(xr; z))T dr do

4: ηr = ηr ∗ β;

5: xr+1 = xr +ηrdr;

6: end while

7: return ηr

Note that the hyperparameter σ can be 0 in our problem. When σ = 0, the armijo step size ensure that

the objective function descent in an approximate context. We also show the special meaning when σ = 0 in

Proposition 5.

EC.3 Proofs

Proof of Proposition 1

The proof Proposition 1 roughly follows the proof of Theorem EC.9 in Bertsimas and Kallus (2019). How-

ever, there are difference between them since Proposition 1 is about the convergence of derivative function

rather than the objective function.

Specifically, for every x, the marginal distribution of y ∼ f (y; x, z) is independent of y conditioned on

z, the ignorability assumption satisfies. Furthermore, The feasible region for x is nonempty, and we only

restrict the up and down limit of the two decisions.

Therefore, we need to prove that the expected gradient E[∇xl(x, y)|x = x′, z = z′] is bounded and equicon-

tinuous on x. First, from Assumption 4(c) we have |∇xl(x, y)| < ∞ for every x ∈ X and y ∈ Y , thus

lim infx∈X ,‖x‖→∞ infy∈Y |∇xl(x, y)|< ∞. Then from Assumption 5, for any x∈ X , ε > 0, x′s.t.‖x− x′‖ ≤ ε/L1g,

‖∇xl(x, y)−∇xl(x′, y′)‖ ≤ L1g‖x′− x‖

≤ε.

Thus ∇xl(x, y) is equicontinuous. Then the proof is completed by Theorem EC.9 in Bertsimas and Kallus

(2019).
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Proof of Proposition 2

Assume that Assumption 1 holds. We rewrite the objective expectation to the integrate form:

∇xE f (y;x,z)[l(x, y)] = ∇x

∫
y∈Ω

l(x, y) f (y; x, z)dy.

Suppose that the derivative of l(x, y), f (y; x, z) can be bounded by an L1 function g for all x, y, then the

derivative and integration operator can be switched.

∇xE f (y;x,z)[l(x, y)] =
∫

y∈Ω

∇x[l(x, y) f (y; x, z)]dy

=
∫

y∈Ω

(∇xl(x, y)) f (y; x, z)dy

+
∫

D∈Ω

(∇x f (y; x, z)) l(x, y)dy

=ED∼ fD(p,z)[∂p,ql(x, y)]

+
∫

D∈Ω

(∇x f (y; x, z)) l(x, y)dy.

Therefore, the equality holds only when the second term of the last equation equals to 0, which is not

guaranteed. So the expectation of cost gradient do not equal to the gradient of objective expectation and

thus the convergence of approximate gradient fails.

Before we begin to proof the convergence results, we first state some important results. The following

lemmas show how Assumption 3 affects the distance between expectations of different distributions.

LEMMA EC.1. Kantorovich-Rubinstein For all function f that is 1−Lipschitz

‖Ed∼D(p)E[ f (d)]−Ed∼D(p′)E[ f (d)]‖ ≤W1(D(p),D(p′)).

LEMMA EC.2. Suppose Assumption 3 holds. Let f : Rn→ Rd be an L−Lipschitz function, and let X ,X ′ ∈
Rn be random variables such that W1(X ,X ′)≤C. Then

‖E[ f (X)]−E[ f (X ′)]‖2 ≤ LC. (EC.5)

Proof of Lemma EC.2

Since
‖E[ f (X)]−E[ f (X ′)]‖2

2 = (E[ f (X)]−E[ f (X ′)])T (E[ f (X)]−E[ f (X ′)])

= ‖E[ f (X)]−E[ f (X ′)]‖2
(E[ f (X)]−E[ f (X ′)])T

‖E[ f (X)]−E[ f (X ′)]‖2
(E[ f (X)]−E[ f (X ′)]),

we define the unit vector e := (E[ f (X)]−E[ f (X ′)])T
‖E[ f (X)]−E[ f (X ′)]‖2

, we can get:

‖E[ f (X)]−E[ f (X ′)]‖2
2 = ‖E[ f (X)]−E[ f (X ′)]‖2(E[eT f (X)]−E[ f (X ′)]).

Since f is a one-dimensional L−lipschitz function, we can apply Lemma EC.1 and Assumption 3 to

obtain that for all e,

‖E[ f (X)]−E[ f (X ′)]‖2
2 ≤ ‖E[ f (X)]−E[ f (X ′)]‖2LC.

Thus completing the proof
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Proof of Theorem 1

We analyze the error of xk+1
N :

‖xk+1
N − x∗‖2 =‖xk

N −η
kĜN(xk

N , z)− x∗‖2

=‖xk
N − x∗‖2− 2η

kĜN(xk
N , z)

T (xk
N − x∗)+ (ηk)2‖ĜN(xk

N , z)‖2.

let N → +∞ for both sides, denote limN→∞ xk
N as xk for simplicity. From Proposition 1 we have

limN→∞ ĜN(x, z) =E f (y;x,z)[∇xl(x, y)] for any x. Therefore, for any ζ > 0, x, z and vector v, ∃N0, ∀N > N0,

‖ĜN(x, z)‖ ≤ ‖E f (y;x,z)[∇xl(x, y)]‖+ ζ,

and

ĜN(x, z)T v≤E f (y;x,z)[∇xl(x, y)]T v+ ζ‖v‖.

Thus, for any ζ > 0, we let ζ1 =
ζ

‖xk
N−x∗‖ and ζ2 =

√
ζ/ηk, ∃N0, for any fix N > N0 we have:

‖xk+1
N − x∗‖2 =‖xk

N − x∗‖2− 2η
kE f (y;xk

N ,z)[∇xl(xk
N , y)]

T (xk
N − x∗)

+ (ηk)2‖E f (y;xk
N ,z)[∇xl(xk

N , y)]‖2 + 3η
k
ζ.

We bound the second term by convexity of the cost function

E f (y;xk
N ,z)[∇xl(xk

N , y)]
T (xk

N − x∗) =E f (y;xk
N ,z)[∇l(xk

N , y)
T (xk

N − x∗)]

≥E f (y;xk
N ,z)[l(x

k
N , y)− l(x∗, y)].

For the third term, we bound by Assumption 4.

‖E f (y;xk
N ,z)[∇xl(xk

N , y)]‖2 ≤ Lc
3.

Thus

2η
kE f (y;xk

N ,z)[l(x
k
N , y)− l(x∗, y)]≤−‖xk+1

N − x∗‖2 + ‖xk
N − x∗‖2 +(ηk)2(Lc

3)
2 + 3η

k
ζ.

We further investigate the right side. We have

E f (y;xk
N ,z)[l(x

k
N , y)− l(x∗, y)] =−E f (y;xk

N ,z)[l(x
∗, y)]+E f (y;x∗,z)[l(x∗, y)]

−E f (y;x∗,z)[l(x∗, y)]+E f (y;xk
N ,z)[l(x

k
N , y)]

≥− |E f (y;xk
N ,z)[l(x

∗, y)]−E f (y;x∗,z)[l(x∗, y)]|

−E f (y;x∗,z)[l(x∗, y)]+E f (y;xk
N ,z)[l(x

k
N , y)]

≥− εL2‖x∗− xk
N‖−E f (y;x∗,z)[l(x∗, y)]+E f (y;xk

N ,z)[l(x
k
N , y)].

This inequality reflects the main difficulty of our proof: to construct the gap of g(x) = E f (y;x,z)[l(x, y)]

between x∗ and xk
N . Then we substitute the inequality and have

2η
k(E f (y;xk

N ,z)[l(x
k
N , y)]−E f (y;x∗,z)[l(x∗, y)])≤2η

k
εL2‖x∗− xk

N‖−‖xk+1
N − x∗‖2

+ ‖xk
N − x∗‖2 +(ηkLc

3)
2 + 3η

k
ζ.
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Take summation from r = 0 to k and take the minimum of the left side, we obtain

(2
k

∑
r=0

η
r) min

0≤r≤k
{E f (y;xr ,z)[l(xr, y)]−E f (y;x∗,z)[l(x∗, y)]} ≤2εL2

k

∑
r=0

η
r‖x∗− xk‖

+ ‖x0− xk‖2 +(Lc
3)

2
k

∑
r=0

(ηr)2 + 3
k

∑
r=0

η
r
ζ.

Hence we complete the proof by dividing 2 ∑
k
r=0 ηr on both sides.

Proof of Proposition 3

We investigate the distance between xk
N and a stable point xPS.

‖xk+1
N − xPS‖2 =‖xk

N −ηĜN(xk
N ; z)− xPS‖2

=‖xk
N − xPS‖2− 2ηĜN(xk

N)
T (xk

N − xPS)+ (η2)‖ĜN(xk
N)‖2.

We begin by upper bounding the second term. From Proposition 1, we know that for any ξ > 0, there

exists a sample size N0 such that supx ‖ĜN(x)−E f (y;x,z)[∇xl(x, y)]‖ ≤ ξ for all N > N0. Thus we have

ĜN(xk
N)

T (xk
N − xPS)≥E f (y;xk

N ,z)[∇xl(xk
N , y)]

T (xk
N − xPS)− ξ‖xk

N − xPS‖.

We can further bound the second term using the same approach as the proof of proposition 2.3 in Mendler-

Dünner et al. (2020b)’s work. They give that

E f (y;xk
N ,z)[∇xl(xk

N , y)]
T (xk

N − xPS)≥ B‖xk
N − xPS‖2.

We then bound the third term:

‖ĜN(xk
N)‖2 ≤ ξ

2 + ‖E f (y;xk
N ,z)[∇xl(xk

N , y)]‖2.

We can also adopt the same approach in the proof of proposition 2.3 in Mendler-Dünner et al. (2020b).

They give that under Assumptions 4 and 3,

‖E f (y;xk
N ,z)[∇xl(xk

N , y)]‖2 ≤ 2B2‖xk
N − xPS‖2.

Therefore, we obtain

‖xk+1
N − xPS‖2 ≤ (1− 2ηA+ 2η

2B2)‖xk
N − xPS‖2 + 2ηξ‖xk

N − xPS‖+ ξ
2
η

2. (EC.6)

In case 1, to give a reasonable distance bound, we need to choose η such that the right-hand side is a

perfect quadratic polynomial. Thus we choose η such that

4B2
η

2− 2Aη+ 1 = 0.
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Note that from the Viete’s theorem, the two solutions are both positive since we assume A > 0. Thus we

only need to ensure that the equation have real solution, that is

4A2 ≥ 16B2, A≥ 2B.

And we take the square root two both sides of equation (EC.6)

‖xk+1
N − xPS‖ ≤

√
1− 2ηA+ 2η2B2‖xk

N − xPS‖+ ξη.

We denote C =
√

1− 2ηA+ 2η2B and divide both sides by Ck+1

‖xk+1
N − xPS‖

Ck+1
≤ ‖x

k
N − xPS‖

Ck
+

ξη

Ck+1
.

Take the summation on both sides from 0 to k+ 1 and we obtain

‖xk+1
N − xPS‖ ≤Ck+1‖x1

N − x∗‖+ ξη
1−Ck+1

1−C
.

Note that ηA−η2B2 = 2ηA+1
4 > 0, thus C < 1 and the distance is decreasing.

Now we focus on case 2. Since the quadratic term on the right-hand side of (EC.6) is less than zero, we

obtain

‖xk+1
N − xPS‖2 ≤ 2ηξ‖xk

N − xPS‖+ ξ
2
η

2. (EC.7)

Thus

‖xk+1
N − xPS‖2−‖xk

N − xPS‖2 ≤−‖xk
N − xPS‖2 + 2ηξ‖xk

N − xPS‖+ ξ
2
η

2.

If ‖xk
N − xPS‖ ≥ (1 +

√
2)ξη, we can derive that ‖xk+1

N − xPS‖2 − ‖xk
N − xPS‖2 ≤ 0, which indicates that

although the distance may exceed the bound (1 +
√

2)ξη some time, it will decrease immediately until it

reach the bound, hence complete the proof.

Proof of Theorem 2

Since l(x, y) is strongly convex in x and L2−Lipschitz continuous in y, the proof is then complete by impos-

ing the triangular inequality to Lemma 1 and Proposition 3.

Proof of Proposition 4

The proof is divided into two steps. In the first step, we prove that the objective function E f (y;x,z)[l(x, y)] has

Lipschitz gradient in x. Then we prove that under diminishing step, any converging subsequence converge

to the stationary point.

We denote g(x) =E f (y;x,z)[l(x, y)], then for any x1, x2 ∈ X

‖∇xg(x1)−∇xg(x2)‖= ‖∇xE f (y;x1,z)[l(x1, y)]−∇xE f (y;x2,z)[l(x2, y)]‖.
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According to Assumption 2, we can write the expectation to integrate form and change the integrate

operator and derivative operator.

‖∇xg(x1)−∇xg(x2)‖=‖
∫

y∈Ω

∇x(l(x1, y) f (y; x1, z))dy−
∫

y∈Ω

∇x(l(x2, y) f (y; x2, z))dy‖

≤‖
∫

y
l(x1, y)(∇x f (y; x1, z))− l(x2, y)(∇x f (y; x2, z))dy‖

+ ‖
∫

y
(∇xl(x1, y)) f (y; x1, z)− (∇xl(x2, y)) f (y; x2, z)dy‖

=I + II.

The second inequality follows by the multiplication rule of derivative. We then analyze I and II respec-

tively.
I ≤‖

∫
y
l(x1, y)∇x f (y; x1, z)dy−

∫
y
l(x1, y)∇x f (y; x2, z)dy‖

+ ‖
∫

y
l(x1, y)∇x f (y; x2, z)dy−

∫
y
l(x2, y)∇x f (y; x2, z)dy‖

≤
∫

y
|l(x1, y)|‖∇x f (y; x1, z)−∇x f (y; x2, z)‖dy

+
∫

y
|l(x1, y)− l(x2, y)|‖∇x f (y; x2, z)‖dy

≤SΩL4L3g‖x1− x2‖+ SΩL5L1‖x1− x2‖.
The first inequality holds from the triangular inequality. The second inequality holds by the Cauchy-

Schwarz inequality. The third inequality holds by the Lipschitz continuous characteristic and intermediate

value theorem, where SΩ denotes of the measurement of the set Ω.

We can also bound the second term by the following steps:

II ≤‖
∫

y
∇xl(x1, y) f (y; x1, z)dy−

∫
y
∇xl(x1, y) f (y; x2, z)dy‖

+ ‖
∫

y
∇xl(x1, y) f (y; x2, z)dy−

∫
y
∇xl(x2, y) f (y; x2, z)dy‖

=‖E f (y;x1,z)[∇xl(x1, y)]−E f (y;x2,z)∇xl(x1, y)‖+ ‖E f (y;x2,z)[∇xl(x1, y)−∇xl(x1, y)]‖

≤εL2g‖x1− x2‖+L2g‖x1− x2‖.

The first inequality holds by the triangular inequality. The first equality holds by the definition of expec-

tation. The second inequality holds by Lemma EC.2 and the definition of Lipschitz gradient.

Thus, ‖∇xg(x1)−∇xg(x2)‖ ≤ [(ε+1)L2g +SΩ(L1L5 +L4L3g)]‖x1− x2‖. Hence the objective function has

Lipschitz gradient and L = (ε+ 1)L2g + SΩ(L1L5 +L4L3g).

recall that the update rule is given by

xr+1
N = xr

N +η
rĜN(x; z).

From descent lemma, we have

g(xr+1
N )≤ g(xr

N)+η
rĜN(xr

N ; z)T
∇g(xr

N)+
L(ηr)2

2
‖ĜN(xr

N ; z)‖2.
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Taking N → ∞ on both sides, since g(x) is continuous and limN→∞ ĜN(x; z) = E f (y;x,z)[∇xl(x, y)] from

Proposition 1.

g(xr+1)− g(xr)≤ η
rE f (y;xr ,z)[∇xl(xr, y)]T ∇g(xr)+

L(ηr)2

2
‖E f (y;xr ,z)[∇xl(xr, y)]‖2.

where xr = limN→∞ xr
N .

Since

E f (y;xr ,z)[∇xl(xr, y)]T g(xr) =‖∇xE f (y;xr ,z)[l(xr, y)]‖2 + ‖E f (y;xr ,z)[∇xl(xr, y)]‖2

−‖
∫

y
l(xr, y)∇x f (y; xr, z)dy‖2

≥(‖∇xE f (y;xr ,z)[l(xr, y)]‖2−L2
4L2

5S2
Ω
)+ ‖E f (y;xr ,z)[∇xl(xr, y)]‖2.

Note that since the range of y is limited, we can scale the random parameters y so that S2
Ω
≤

‖∇xE f (y;xr ,z)[l(x
r ,y)]‖

L4L5
. Thus,

E f (y;xr ,z)[∇xl(xr, y)]T g(xr)≥ ‖E f (y;xr ,z)[∇xl(xr, y)]‖2.

Therefore,

g(xr+1)− g(xr)≤−η
r(1− Lηr

2
)‖E f (y;xr ,z)[∇xl(xr, y)]‖2.

Since ηr is diminishing, for any ξ∈ (0,1), there exists r̄ such that for any r≥ r̄, we have

g(xr+1)− g(xr)≤−η
r
ξ‖E f (y;xr ,z)[∇xl(xr, y)]‖2.

Since limr∈K→∞ xr = x̄ and g(x) is continuous, we have limr→∞ g(xr) = g(x̄). Taking summation on both

sides from r = r̄ to ∞, we can obtain that

∞

∑
r=r̄

η
r
ξ‖E f (D;xr ,z)[∇xl(xr,D)]‖2 ≤ g(xr̄)− lim

r→∞

g(xr).

Since ∑
∞

r=r̄ αr = +∞, we have limr∈K→∞ ‖E f (y;xr ,z)[∇xl(xr, y)]‖2 = 0, hence E f (y;x̄,z)[∇xl(x̄, y)] = 0 and the

proof is completed.

Proof of Proposition 5

To simplify the denotation, we omit the limitation of N → ∞. Therefore the descent direction is dr =

−E f (y;xr ,z)[∇xl(xr, y)], where xr = limN→∞ xr
N . According to the armijo principle:

g(xr)− g(xr+1)≥−η
r
σ‖E f (y;xr ,z)[∇xl(xr, y)]‖T dr.

Since limr(∈K )→∞ supr ‖E f (y;xr ,z)[∇xl(xr, y)]‖ ≥ 0. The sequence E f (y;xr ,z)[l(xr, y)] decreases monotonically

and have a lower bound. Thus

lim
r(∈K )→∞

g(xr)− g(xr+1) = 0,
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which is followed by

lim
r(∈K )→∞

η
r = 0.

Hence, by the definition of the armijo rule, we must have for some index r̄≥ 0

g(xr)− g(xr +
ηr

β
dr)<−σ

ηr

β
‖E f (y;xr ,z)[∇xl(xr, y)]‖T dr,∀r ∈K , r≥ r̄.

We denote

pr :=
dr

‖dr‖
, η̄

r :=
ηr‖dr‖

β
.

Since ‖pr‖= 1, there exists a subsequence {pr}K̄ of {pr}K such that {pr}K̄ → p̄, where p̄ is a unit vector.

Then
g(xr)− g(xr+1)

η̄r
<−σ(E f (xr ;y,z)[∇xl(y, xr)])T pr.

Hence,

g(xr)−E f (y;xr ,z)[l(xr+1, y)]+E f (y;xr ,z)[l(xr+1, y)]− g(xr+1)

η̄r
<−σ(E f (y;xr ,z)[∇xl(xr, y)])T pr. (EC.8)

By Lemma EC.2, g(xr)− g(xr+1)≥−εL1‖η̄r pr‖.

By using the mean value theorem,

−εL1‖η̄r pr‖
η̄r

+E f (y;xr ,z)[∇xl(xr + α̃
r pr, y)]T pr

<−σ(E f (y;xr ,z)[∇xl(xr, y)])T pr.

(EC.9)

Let r(∈ K̄ )→∞,

−εL1− (E f (y;x̄,z)[∇xl(x̄, y)])T p̄ <−σE f (y;x̄,z)[∇xl(x̄, y)]T p̄.

Substituting dr =−E f (y;xr ,z)[∇xl(xr, y)], we have

−εL1 <−(1−σ)‖E f (y;x̄,z)[∇xl(x̄, y)]‖.

which completes the proof.

Proof of Proposition 6

For any given sequence {xr
N}k

r=1, denote gr(x) =E f (y;xr ,z)[l(x, y)]. Then ∇xgr(x) =E f (y;xr ,z)[∇xl(x, y)].

Since l(x, y) has L1g−Lipschitz gradient, by the descent lemma, when N→∞,

gr(xr+1
N )− gr(xr

N) =gr(xr
N −ηE f (y;xr

N ,z)[∇xl(xr
N , y)])− gr(xr

N)

≤− (1− L1gη

2
)η‖E f (y;xr

N ,z)[∇xl(xr
N , y)]‖2.

Thus,
k

∑
r=0

‖E f (y;xr
N ,z)[∇xl(xr

N , y)]‖2 ≤ 2
η

k

∑
r=0

(
gr(xr+1

N )− gr(xr
N)
)
. (EC.10)
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And,
k

∑
r=0

gr(xr+1
N )− gr(xr

N) =
k

∑
r=0

[gr+1(xr+1
N )− gr(xr

N)]+ [gr(xr+1
N )− gr+1(xr+1

N )]

≤g0(x0
N)− g∗(x∗)+

k

∑
r=0

gr(xr+1
N )− gr+1(xr+1

N )

≤g0(x0
N)− g∗(x∗)+L1ε

k

∑
r=1

‖xr
N − xr−1

N ‖

=g0(x0
N)− g∗(x∗)+L1ε

k

∑
r=1

‖ηE f (y;xr
N ,z)[∇xl(xr

N , y)]‖

≤g0(x0
N)− g∗(x∗)+L1ε

k

∑
r=1

ηLc
3,

where the first inequality holds because g∗(x∗)≤ gr(xr
N) for any xr, the second inequality holds by Lemma

EC.2 and Assumption 3, and the third inequality holds by Assumption 4(c).

Then the proof completes by taking the union inequality on the left side of (EC.10) and dividing both

sides by k+ 1.

Proof of Theorem 3

We proof the theorem by contradiction. Suppose x∗ maximize maxx g(x) = E f (y;x,z)[l(x, y)], and

‖E f (y;x∗,z)[∇xl(x∗, y)]‖> L1ε. Then for any x1 ∈ X ,

g(x1)− g(x∗) =
(
E f (y;x1,z)[l(x1, y)]−E f (y;x,z)[l(x, y)]

)
=
(
E f (y;x1,z)[l(x1, y)]−E f (y;x∗,z)[l(x1, y)]

)
+
(
E f (y;x∗,z)[l(x1, y)]−E f (y;x,z)[l(x, y)]

)
.

From Lemma EC.2, we have

|E f (y;x1,z)[l(x1, y)]−E f (y;x∗,z)[l(x1, y)]| ≤ L1ε‖x1− x∗‖.

For the second term, we expand l(x1, y) at x∗ and obtain

E f (y;x∗,z)[l(x1, y)]−E f (y;x,z)[l(x, y)] =E f (y;x∗,z)[∇xl(x∗, y)]T (x1− x∗)+ o(‖x1− x∗‖),

where o(‖x1− x∗‖) denotes the first-order infinitesimals to ‖x1 − x∗‖. By substituting the two terms above

and divide both sides by ‖x1− x∗‖, we obtain
g(x1)− g(x∗)
‖x1− x∗‖

≥−L1ε+E f (y;x∗,z)[∇xl(x∗, y)]T
(x1− x∗)
‖x1− x∗‖

+
o(‖x1− x∗‖)
‖x1− x∗‖

.

We let x1 − x∗ take the same direction of E f (y;x∗,z)[∇xl(x∗, y)], hence the second term on the right side

becomes ‖E f (y;x∗,z)[∇xl(x∗, y)]‖. Therefore, for any ξ > 0, there exists x1 that is sufficiently close to x∗ such

that
g(x1)− g(x∗)
‖x1− x∗‖

≥−L1ε+ ‖E f (y;x∗,z)[∇xl(x∗, y)]‖− ξ.

Since ‖E f (y;x∗,z)[∇xl(x∗, y)]‖ > L1ε and ξ can be sufficiently small, we have g(x1) − g(x∗) > 0, which

contradicts with the condition that g(x∗) is the optimal solution.
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EC.4 Experiment Supplements

EC.4.1 Description of data

Table EC.1 Description of real electricity pricing data

Variable Type Description Statistics
Date datetime the date of the recording min 1Jan15, max 6Oct20

Demand float a total daily electricity demand in
MWh

min 85.1k, median 120k, max
171k

RRP float a recommended retail price in
AUD$/MWh

min 0, median 66.7, max 300

min temperature float minimum temperature during the
day in Celsius

min 0.6, median 11.3, max 28

max temperature float maximum temperature during the
day in Celsius

min 9, median 19.1, max 43.5

solar exposure float total daily sunlight energy in
MJ/m2̂

min 0.7, median 12.7, max 33.3

rainfall float daily rainfall in mm min 0, median 0, max 54.6
school day boolean if students were at school on that

day
True 69%, False 31%

holiday boolean if the day was a state or national
holiday

True 4%, False 96%

Real data The real dataset comes from a real-world power plant pricing scenario

(https://www.kaggle.com/datasets/aramacus/electricity-demand-in-victoria-australia). This dataset

describes the electricity demand and price situation in Victoria, Australia from 2015 to 2020. The

distribution of demand can be seen in Figure EC.1. The descriptive information of the real data is shown in

Table EC.1. The factors that influence daily demand are price, temperature, solar exposure, school day and

holiday. Note that we perform an artificial transformation on the temperature. We define heating degree

day (HDD) as HDD = (Tmin − 18)+ , and cooling heating degree day (CDD) as CDD = (15 − Tmax)
+,

where Tmax and Tmin are the highest and lowest centigrade temperatures in one day. This transformation

can better reflect the relationship between temperature and electricity demand. The demand is sensitive to

price, but it also depend on other features such as temperature and holiday. In our work, we consider the

temperature, solar, rainfall, school day and holiday factors. Note that the scales of features are different,

so we standardize the feature to [0,1] when processing the data. We use Euclidean metric to measure the

distance between samples.

Simulation data In terms of simulation data, we generate the demand by the following model.

D = max{0,60− p+ 12aT (X + 0.25φ)+ 5bT Xθ}, (EC.11)

where φ ∼ N(0, I4) is a 4-dimensional vector, θ ∼ N(0,1) is also a Guassian parameter. Both θ and φ

are the stochastic factors that cause demand fluctuation. The constant vector a = (0,8,1,1,1)T and b =

(−1,1,0,0)T . Note that we refer the demand model to Lin et al. (2022). The demand distribution under
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Figure EC.1 Demand distribution for real data
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p = 20 is shown in Figure EC.2. We observe that the distribution is skew and long tail, thus hard to predict

by simple models such as linear regression.

Figure EC.2 Demand distribution for simulated data

0 25 50 75 100 125 150 175
demand

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

fre
qu

en
cy

The second demand model is simply a linear regression model to suit the PTO assumption, where D =

60− p+(1,1,1,1)T z+ φ and φ∼N(0,1). Thus the demand follows a normal distribution under any price

and feature.
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EC.4.2 Step size comparison

The step size of CGD algorithm adopted in the numerical experiment part is the Armijo step size with σ = 0.

In Section 3.2.2, we have analyzed the difference on convergence between the diminishing step size and

Armijo step size. In this section, we will evaluate the difference by experiment.

We first compare two kinds of step size in the simulated dataset. We set the step size constant C = 0.05

in diminishing step size approach. The realized profit and optimality gap are shown in Table EC.2. We

can find that the diminishing step size performs worse than Armijo step size in this case. We believe the

reason is that the assumptions for the convergence under diminishing step size are usually too strong. The

value range Ω in Assumption 1 and L4,L5 constant in Proposition 4 maybe large in practice, causing a bad

convergence performance. Moreover, we find that although any convergent subsequence converge to the

local maximum according to Proposition 4, the diminishing step size cannot stop at the local maximum

automatically, which indicates that the diminishing step size may not lead to any convergence subsequence.

Therefore, the diminishing step size need a careful selection on the step size constant C and stop criteria.

Table EC.2 Realized profit of Armijo step size and Diminishing step size

Method kNN kernel CART RF
Armijo 674.37 698.20 689.94 584.07

Diminishing 524.05 512.858 560.0039 388.8681

We also evaluate the effect of hyperparameter σ on CGD algorithm. Table EC.3 reports the optimality gap

and iteration number for different constant σ under kernel regression . Figure EC.3 plots the supplementary

result in terms of σ and optimality gap. We observe the performance is stable when α0 ∈ (0.01,0.1), and

when σ≤ 0.2. The increment of both α0 and σ can reduce the iteration numbers, thus accelerate the solution.

But when α0 is larger than 0.5, the optimality gap may become larger. Larger σ can block the update of

solution and may cause the algorithm to stop before reaching the convergence.
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Table EC.3 Performance comparison among different initial step sizes and σ of Armijo step size

(α0, σ) profit optimality gap iterations (α0, σ) profit optimality gap iterations
(0.01, 0) 695.89 0.97% 90 (0.5, 0) 672.02 4.37% 2

(0.01, 0.1) 688.28 2.05% 74 (0.5, 0.1) 691.25 1.63% 2
(0.01, 0.2) 659.48 6.15% 62 (0.5, 0.2) 667.36 5.03% 2
(0.01, 0.5) 475.37 32.35% 28 (0.5, 0.5) 562.69 19.92% 1
(0.01, 0.9) 300.00 57.31% 0 (0.5, 0.9) 300.00 57.31% 0
(0.05, 0) 698.20 0.64% 18 (1, 0) 653.18 7.05% 1

(0.05, 0.1) 688.84 1.97% 15 (1, 0.1) 653.18 7.05% 1
(0.05, 0.2) 662.67 5.70% 13 (1, 0.2) 653.18 7.05% 1
(0.05, 0.5) 478.73 31.87% 6 (1, 0.5) 569.02 19.02% 1
(0.05, 0.9) 300.00 57.31% 0 (1, 0.9) 300.00 57.31% 0

(0.1, 0) 696.72 0.85% 9
(0.1, 0.1) 689.42 1.89% 8
(0.1, 0.2) 659.40 6.16% 7
(0.1, 0.5) 491.16 30.10% 3
(0.1, 0.9) 300.00 57.31% 0

Figure EC.3 Performance comparison among different initial step sizes and σ of Armijo step size
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